FlowiseAI Service¶
FlowiseAI is a powerful visual workflow builder that enables developers to create LLM-based applications through an intuitive drag-and-drop interface. It supports integration with multiple AI services and provides a low-code solution for complex AI workflows.
Architecture Overview¶
graph TB
A[User Interface] -->|Drag & Drop| B[Workflow Designer]
B -->|Configure| C[Node Components]
C -->|Connect| D[LLM Providers]
C -->|Connect| E[Data Sources]
C -->|Connect| F[Output Handlers]
D --> G[OpenAI]
D --> H[Anthropic]
D --> I[Local Models]
E --> J[Vector Stores]
E --> K[Databases]
F --> L[APIs]
F --> M[Webhooks]
%% Styling
classDef uiClass fill:#e3f2fd,stroke:#0d47a1,stroke-width:2px,color:#000
classDef designerClass fill:#f1f8e9,stroke:#33691e,stroke-width:2px,color:#000
classDef componentClass fill:#fff8e1,stroke:#f57f17,stroke-width:2px,color:#000
classDef providerClass fill:#fce4ec,stroke:#ad1457,stroke-width:2px,color:#000
classDef dataClass fill:#e0f2f1,stroke:#00695c,stroke-width:2px,color:#000
classDef outputClass fill:#f3e5f5,stroke:#6a1b9a,stroke-width:2px,color:#000
classDef serviceClass fill:#ede7f6,stroke:#4527a0,stroke-width:2px,color:#000
class A uiClass
class B designerClass
class C componentClass
class D,G,H,I providerClass
class E,J,K dataClass
class F,L,M outputClass
Key Features¶
Visual Workflow Builder¶
- Drag-and-drop interface for creating complex AI workflows
- Pre-built components for common AI tasks
- Real-time flow execution and debugging
- Visual data flow representation
LLM Integrations¶
- Support for multiple LLM providers (OpenAI, Anthropic, Cohere, etc.)
- Local model integration via Ollama
- Custom model endpoint configuration
- Chain multiple models in sequence
Data Connectors¶
- Vector database integration (Pinecone, Weaviate, etc.)
- Document loaders (PDF, Word, web scraping)
- Database connectors (PostgreSQL, MongoDB)
- API integration capabilities
Advanced Capabilities¶
- Memory management for conversational flows
- Custom function nodes with JavaScript/Python
- Conditional logic and branching
- Error handling and retry mechanisms
Configuration Schema¶
Environment Variables¶
# Basic Configuration
PORT=3000
DATABASE_TYPE=postgres
DATABASE_HOST=postgres
DATABASE_USER=postgres
DATABASE_PASSWORD=postgres
DATABASE_NAME=flowise
# Authentication
JWT_AUTH_TOKEN_SECRET=${JWT_AUTH_TOKEN_SECRET}
FLOWISE_USERNAME=${FLOWISE_USERNAME}
FLOWISE_PASSWORD=${FLOWISE_PASSWORD}
# Storage Paths
SECRETKEY_PATH=/root/.flowise
LOG_PATH=/root/.flowise/logs
BLOB_STORAGE_PATH=/root/.flowise/storage
# Telemetry Settings
DISABLE_FLOWISE_TELEMETRY=true
Node Configuration Example¶
{
"id": "openai-node",
"type": "LLMChain",
"data": {
"model": "gpt-3.5-turbo",
"temperature": 0.7,
"maxTokens": 1000,
"prompt": "Answer the following question: {question}"
},
"inputs": ["question"],
"outputs": ["response"]
}
Access¶
FlowiseAI is accessible at:
Supported Integrations¶
LLM Providers¶
- OpenAI (GPT-3.5, GPT-4)
- Anthropic (Claude)
- Cohere
- Hugging Face
- Azure OpenAI
- Local models via Ollama
Vector Databases¶
- Pinecone
- Weaviate
- Qdrant
- Chroma
- Supabase
Document Loaders¶
- PDF files
- CSV/Excel files
- Web scraping
- Notion pages
- GitHub repositories
Online Resources¶
- GitHub Repository: FlowiseAI GitHub
- Official Website: FlowiseAI.com
- Documentation: FlowiseAI Docs
- Community: Discord Server
Use Cases¶
- Chatbots: Build intelligent conversational agents
- Document Q&A: Create systems for querying large document collections
- Content Generation: Automate content creation workflows
- Data Analysis: Build AI-powered analytics pipelines
- API Integration: Connect multiple services with AI processing
FlowiseAI is perfect for developers, product managers, and AI enthusiasts who want to rapidly prototype and deploy AI applications without extensive coding.