Skip to content

System Design

Overview

The NetApp ActiveIQ MCP Server implements a bridge between the Model Context Protocol (MCP) and NetApp's ActiveIQ Unified Manager API, enabling AI assistants and automation tools to interact with NetApp storage infrastructure through natural language interfaces.

High-Level Architecture

graph TB

    subgraph "AI/Client Layer"
        A1[Claude Desktop]
        A2[Custom AI App]
        A3[MCP Client]
    end

    subgraph "MCP Protocol Layer"
        B1[MCP Transport]
        B2[Tool Registry]
        B3[Schema Validator]
    end

    subgraph "NetApp MCP Server Core"
        C1[Request Router]
        C2[Tool Executor]
        C3[Response Formatter]
        C4[Authentication Manager]
        C5[Cache Manager]
        C6[Event Handler]
    end

    subgraph "Integration Layer"
        D1[NetApp API Client]
        D2[Temporal Workflows]
        D3[Prometheus Metrics]
        D4[Error Handler]
    end

    subgraph "NetApp Infrastructure"
        E1[ActiveIQ Unified Manager]
        E2[ONTAP Clusters]
        E3[Storage Systems]
    end

    subgraph "External Services"
        F1[Temporal Server]
        F2[Redis Cache]
        F3[Monitoring System]
    end

    A1 --> B1
    A2 --> B1
    A3 --> B1

    B1 --> C1
    B2 --> C2
    B3 --> C3

    C1 --> D1
    C2 --> D2
    C3 --> D3
    C4 --> D1
    C5 --> F2
    C6 --> D4

    D1 --> E1
    D2 --> F1
    D3 --> F3

    E1 --> E2
    E1 --> E3

Component Architecture

MCP Protocol Layer

MCP Transport

  • Purpose: Handles MCP protocol communication
  • Responsibilities:
  • Message serialization/deserialization
  • Protocol version negotiation
  • Connection management
  • Error propagation

Tool Registry

  • Purpose: Maintains registry of available MCP tools
  • Responsibilities:
  • Tool discovery and registration
  • Schema validation
  • Tool metadata management
  • Capability advertisement

Schema Validator

  • Purpose: Validates MCP messages and tool arguments
  • Responsibilities:
  • JSON schema validation
  • Type checking
  • Parameter validation
  • Error reporting

Server Core

Request Router

  • Purpose: Routes incoming MCP requests to appropriate handlers
  • Implementation:
    class RequestRouter:
        def __init__(self):
            self.tools = ToolRegistry()
            self.auth = AuthenticationManager()
    
        async def route_request(self, request: MCPRequest) -> MCPResponse:
            # Authenticate request
            if not await self.auth.validate(request):
                return MCPResponse.error("Authentication failed")
    
            # Route to tool
            tool = self.tools.get_tool(request.method)
            if not tool:
                return MCPResponse.error("Tool not found")
    
            return await tool.execute(request.params)
    

Tool Executor

  • Purpose: Executes NetApp operations through registered tools
  • Key Features:
  • Async execution
  • Timeout handling
  • Rate limiting
  • Result caching

Response Formatter

  • Purpose: Formats responses according to MCP specification
  • Responsibilities:
  • Result serialization
  • Error formatting
  • Schema compliance
  • Content negotiation

Authentication Manager

  • Purpose: Manages NetApp API authentication
  • Implementation:
    class AuthenticationManager:
        def __init__(self, config: NetAppConfig):
            self.session = aiohttp.ClientSession(
                auth=aiohttp.BasicAuth(config.username, config.password),
                connector=aiohttp.TCPConnector(ssl=config.verify_ssl)
            )
    
        async def validate_connection(self) -> bool:
            try:
                async with self.session.get(f"{self.base_url}/datacenter/cluster/clusters") as resp:
                    return resp.status == 200
            except Exception:
                return False
    

Integration Layer

NetApp API Client

  • Purpose: Interfaces with ActiveIQ Unified Manager API
  • Key Features:
  • Connection pooling
  • Retry logic
  • Response caching
  • Error handling
class NetAppAPIClient:
    def __init__(self, config: NetAppConfig):
        self.base_url = f"https://{config.host}/api/v2"
        self.session = self._create_session(config)

    async def get_clusters(self, **params) -> List[Dict]:
        url = f"{self.base_url}/datacenter/cluster/clusters"
        async with self.session.get(url, params=params) as resp:
            data = await resp.json()
            return data.get('records', [])

Temporal Workflows

  • Purpose: Orchestrates complex, long-running NetApp operations
  • Use Cases:
  • SVM creation workflows
  • Volume provisioning
  • Data migration
  • Backup operations

Prometheus Metrics

  • Purpose: Exposes operational metrics
  • Metrics:
  • Request count and duration
  • NetApp API response times
  • Error rates
  • Cache hit/miss ratios

Data Flow

Request Processing Flow

sequenceDiagram
    participant Client as MCP Client
    participant Server as MCP Server
    participant Cache as Cache Layer
    participant NetApp as NetApp API

    Client->>Server: MCP Request
    Server->>Server: Validate Request
    Server->>Server: Authenticate
    Server->>Cache: Check Cache

    alt Cache Hit
        Cache-->>Server: Cached Response
    else Cache Miss
        Server->>NetApp: API Request
        NetApp-->>Server: API Response
        Server->>Cache: Store Response
    end

    Server->>Server: Format Response
    Server-->>Client: MCP Response

Error Handling Flow

sequenceDiagram
    participant Client as MCP Client
    participant Server as MCP Server
    participant NetApp as NetApp API
    participant Monitor as Monitoring

    Client->>Server: MCP Request
    Server->>NetApp: API Request
    NetApp-->>Server: Error Response

    Server->>Server: Parse Error
    Server->>Monitor: Log Error
    Server->>Server: Format Error Response
    Server-->>Client: MCP Error Response

Scalability Design

Horizontal Scaling

  • Stateless Design: Server instances are stateless
  • Load Balancing: Support for multiple server instances
  • Shared Cache: Redis for cross-instance caching
  • Database: External storage for persistent data

Performance Optimization

  • Connection Pooling: Reuse HTTP connections to NetApp APIs
  • Async Processing: Non-blocking I/O operations
  • Caching Strategy: Multi-level caching (memory + Redis)
  • Request Batching: Batch multiple requests when possible

Resource Management

class ResourceManager:
    def __init__(self, config: Config):
        self.semaphore = asyncio.Semaphore(config.max_concurrent_requests)
        self.connection_pool = aiohttp.TCPConnector(
            limit=config.max_connections,
            limit_per_host=config.max_connections_per_host
        )

    async def execute_with_limit(self, coro):
        async with self.semaphore:
            return await coro

Security Architecture

Authentication Flow

sequenceDiagram
    participant Client as MCP Client
    participant Server as MCP Server
    participant Auth as Auth Service
    participant NetApp as NetApp API

    Client->>Server: Request with Token
    Server->>Auth: Validate Token
    Auth-->>Server: Token Valid
    Server->>NetApp: API Request (Service Account)
    NetApp-->>Server: Response
    Server-->>Client: MCP Response

Security Layers

  1. Transport Security: TLS encryption
  2. Authentication: JWT tokens or API keys
  3. Authorization: Role-based access control
  4. NetApp Security: Service account with minimal permissions
  5. Input Validation: Strict parameter validation
  6. Output Sanitization: Sensitive data filtering

Configuration Management

Configuration Schema

# Server configuration
server:
  host: "0.0.0.0"
  port: 8080
  workers: 4
  max_connections: 100
  timeout: 30

# NetApp configuration
netapp:
  um_host: "unified-manager.company.com"
  username: "service-account"
  password: "${NETAPP_PASSWORD}"
  verify_ssl: false
  timeout: 30
  max_retries: 3

# Cache configuration
cache:
  type: "redis"
  url: "redis://localhost:6379"
  ttl: 300
  max_size: 1000

# Monitoring configuration
monitoring:
  metrics_enabled: true
  metrics_port: 9090
  health_check_interval: 30
  log_level: "INFO"

Deployment Architecture

Container Architecture

FROM python:3.11-slim

# Install dependencies
COPY requirements.txt .
RUN pip install -r requirements.txt

# Copy application
COPY . /app
WORKDIR /app

# Set up user
RUN adduser --disabled-password --gecos '' netapp
USER netapp

# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
  CMD curl -f http://localhost:8080/health || exit 1

CMD ["python", "-m", "netapp_mcp_server"]

Kubernetes Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
  name: netapp-mcp-server
spec:
  replicas: 3
  selector:
    matchLabels:
      app: netapp-mcp-server
  template:
    metadata:
      labels:
        app: netapp-mcp-server
    spec:
      containers:
      - name: netapp-mcp-server
        image: netapp/activeiq-mcp-server:latest
        ports:
        - containerPort: 8080
        env:
        - name: NETAPP_UM_HOST
          valueFrom:
            secretKeyRef:
              name: netapp-credentials
              key: um-host
        resources:
          requests:
            memory: "512Mi"
            cpu: "250m"
          limits:
            memory: "1Gi"
            cpu: "500m"
        livenessProbe:
          httpGet:
            path: /health
            port: 8080
          initialDelaySeconds: 30
          periodSeconds: 10

Monitoring and Observability

Metrics Collection

  • Application Metrics: Request rates, response times, error rates
  • System Metrics: CPU, memory, disk usage
  • NetApp Metrics: API response times, connection status
  • Business Metrics: Tool usage, user activity

Logging Strategy

import structlog

logger = structlog.get_logger("netapp.mcp.server")

async def execute_tool(tool_name: str, params: dict):
    logger.info("tool.execute.start", tool=tool_name, params=params)

    try:
        result = await tool.execute(params)
        logger.info("tool.execute.success", tool=tool_name, result_size=len(result))
        return result
    except Exception as e:
        logger.error("tool.execute.error", tool=tool_name, error=str(e))
        raise

Health Checks

class HealthChecker:
    async def check_health(self) -> Dict[str, Any]:
        checks = {
            "server": await self.check_server(),
            "netapp": await self.check_netapp_connection(),
            "cache": await self.check_cache(),
            "temporal": await self.check_temporal()
        }

        status = "healthy" if all(checks.values()) else "unhealthy"
        return {"status": status, "checks": checks}

Future Enhancements

Planned Features

  1. GraphQL Support: Alternative query interface
  2. WebSocket Support: Real-time event streaming
  3. Plugin System: Extensible tool architecture
  4. Multi-tenant Support: Isolated environments
  5. Advanced Caching: Intelligent cache invalidation
  6. ML Integration: Predictive analytics

Scalability Roadmap

  1. Database Layer: Persistent storage for complex queries
  2. Event Streaming: Kafka/Pulsar for event processing
  3. Microservices: Split into specialized services
  4. API Gateway: Centralized routing and security
  5. Service Mesh: Advanced networking and observability