System Design¶
Overview¶
The NetApp ActiveIQ MCP Server implements a bridge between the Model Context Protocol (MCP) and NetApp's ActiveIQ Unified Manager API, enabling AI assistants and automation tools to interact with NetApp storage infrastructure through natural language interfaces.
High-Level Architecture¶
graph TB
subgraph "AI/Client Layer"
A1[Claude Desktop]
A2[Custom AI App]
A3[MCP Client]
end
subgraph "MCP Protocol Layer"
B1[MCP Transport]
B2[Tool Registry]
B3[Schema Validator]
end
subgraph "NetApp MCP Server Core"
C1[Request Router]
C2[Tool Executor]
C3[Response Formatter]
C4[Authentication Manager]
C5[Cache Manager]
C6[Event Handler]
end
subgraph "Integration Layer"
D1[NetApp API Client]
D2[Temporal Workflows]
D3[Prometheus Metrics]
D4[Error Handler]
end
subgraph "NetApp Infrastructure"
E1[ActiveIQ Unified Manager]
E2[ONTAP Clusters]
E3[Storage Systems]
end
subgraph "External Services"
F1[Temporal Server]
F2[Redis Cache]
F3[Monitoring System]
end
A1 --> B1
A2 --> B1
A3 --> B1
B1 --> C1
B2 --> C2
B3 --> C3
C1 --> D1
C2 --> D2
C3 --> D3
C4 --> D1
C5 --> F2
C6 --> D4
D1 --> E1
D2 --> F1
D3 --> F3
E1 --> E2
E1 --> E3
Component Architecture¶
MCP Protocol Layer¶
MCP Transport¶
- Purpose: Handles MCP protocol communication
- Responsibilities:
- Message serialization/deserialization
- Protocol version negotiation
- Connection management
- Error propagation
Tool Registry¶
- Purpose: Maintains registry of available MCP tools
- Responsibilities:
- Tool discovery and registration
- Schema validation
- Tool metadata management
- Capability advertisement
Schema Validator¶
- Purpose: Validates MCP messages and tool arguments
- Responsibilities:
- JSON schema validation
- Type checking
- Parameter validation
- Error reporting
Server Core¶
Request Router¶
- Purpose: Routes incoming MCP requests to appropriate handlers
- Implementation:
class RequestRouter: def __init__(self): self.tools = ToolRegistry() self.auth = AuthenticationManager() async def route_request(self, request: MCPRequest) -> MCPResponse: # Authenticate request if not await self.auth.validate(request): return MCPResponse.error("Authentication failed") # Route to tool tool = self.tools.get_tool(request.method) if not tool: return MCPResponse.error("Tool not found") return await tool.execute(request.params)
Tool Executor¶
- Purpose: Executes NetApp operations through registered tools
- Key Features:
- Async execution
- Timeout handling
- Rate limiting
- Result caching
Response Formatter¶
- Purpose: Formats responses according to MCP specification
- Responsibilities:
- Result serialization
- Error formatting
- Schema compliance
- Content negotiation
Authentication Manager¶
- Purpose: Manages NetApp API authentication
- Implementation:
class AuthenticationManager: def __init__(self, config: NetAppConfig): self.session = aiohttp.ClientSession( auth=aiohttp.BasicAuth(config.username, config.password), connector=aiohttp.TCPConnector(ssl=config.verify_ssl) ) async def validate_connection(self) -> bool: try: async with self.session.get(f"{self.base_url}/datacenter/cluster/clusters") as resp: return resp.status == 200 except Exception: return False
Integration Layer¶
NetApp API Client¶
- Purpose: Interfaces with ActiveIQ Unified Manager API
- Key Features:
- Connection pooling
- Retry logic
- Response caching
- Error handling
class NetAppAPIClient:
def __init__(self, config: NetAppConfig):
self.base_url = f"https://{config.host}/api/v2"
self.session = self._create_session(config)
async def get_clusters(self, **params) -> List[Dict]:
url = f"{self.base_url}/datacenter/cluster/clusters"
async with self.session.get(url, params=params) as resp:
data = await resp.json()
return data.get('records', [])
Temporal Workflows¶
- Purpose: Orchestrates complex, long-running NetApp operations
- Use Cases:
- SVM creation workflows
- Volume provisioning
- Data migration
- Backup operations
Prometheus Metrics¶
- Purpose: Exposes operational metrics
- Metrics:
- Request count and duration
- NetApp API response times
- Error rates
- Cache hit/miss ratios
Data Flow¶
Request Processing Flow¶
sequenceDiagram
participant Client as MCP Client
participant Server as MCP Server
participant Cache as Cache Layer
participant NetApp as NetApp API
Client->>Server: MCP Request
Server->>Server: Validate Request
Server->>Server: Authenticate
Server->>Cache: Check Cache
alt Cache Hit
Cache-->>Server: Cached Response
else Cache Miss
Server->>NetApp: API Request
NetApp-->>Server: API Response
Server->>Cache: Store Response
end
Server->>Server: Format Response
Server-->>Client: MCP Response
Error Handling Flow¶
sequenceDiagram
participant Client as MCP Client
participant Server as MCP Server
participant NetApp as NetApp API
participant Monitor as Monitoring
Client->>Server: MCP Request
Server->>NetApp: API Request
NetApp-->>Server: Error Response
Server->>Server: Parse Error
Server->>Monitor: Log Error
Server->>Server: Format Error Response
Server-->>Client: MCP Error Response
Scalability Design¶
Horizontal Scaling¶
- Stateless Design: Server instances are stateless
- Load Balancing: Support for multiple server instances
- Shared Cache: Redis for cross-instance caching
- Database: External storage for persistent data
Performance Optimization¶
- Connection Pooling: Reuse HTTP connections to NetApp APIs
- Async Processing: Non-blocking I/O operations
- Caching Strategy: Multi-level caching (memory + Redis)
- Request Batching: Batch multiple requests when possible
Resource Management¶
class ResourceManager:
def __init__(self, config: Config):
self.semaphore = asyncio.Semaphore(config.max_concurrent_requests)
self.connection_pool = aiohttp.TCPConnector(
limit=config.max_connections,
limit_per_host=config.max_connections_per_host
)
async def execute_with_limit(self, coro):
async with self.semaphore:
return await coro
Security Architecture¶
Authentication Flow¶
sequenceDiagram
participant Client as MCP Client
participant Server as MCP Server
participant Auth as Auth Service
participant NetApp as NetApp API
Client->>Server: Request with Token
Server->>Auth: Validate Token
Auth-->>Server: Token Valid
Server->>NetApp: API Request (Service Account)
NetApp-->>Server: Response
Server-->>Client: MCP Response
Security Layers¶
- Transport Security: TLS encryption
- Authentication: JWT tokens or API keys
- Authorization: Role-based access control
- NetApp Security: Service account with minimal permissions
- Input Validation: Strict parameter validation
- Output Sanitization: Sensitive data filtering
Configuration Management¶
Configuration Schema¶
# Server configuration
server:
host: "0.0.0.0"
port: 8080
workers: 4
max_connections: 100
timeout: 30
# NetApp configuration
netapp:
um_host: "unified-manager.company.com"
username: "service-account"
password: "${NETAPP_PASSWORD}"
verify_ssl: false
timeout: 30
max_retries: 3
# Cache configuration
cache:
type: "redis"
url: "redis://localhost:6379"
ttl: 300
max_size: 1000
# Monitoring configuration
monitoring:
metrics_enabled: true
metrics_port: 9090
health_check_interval: 30
log_level: "INFO"
Deployment Architecture¶
Container Architecture¶
FROM python:3.11-slim
# Install dependencies
COPY requirements.txt .
RUN pip install -r requirements.txt
# Copy application
COPY . /app
WORKDIR /app
# Set up user
RUN adduser --disabled-password --gecos '' netapp
USER netapp
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
CMD curl -f http://localhost:8080/health || exit 1
CMD ["python", "-m", "netapp_mcp_server"]
Kubernetes Deployment¶
apiVersion: apps/v1
kind: Deployment
metadata:
name: netapp-mcp-server
spec:
replicas: 3
selector:
matchLabels:
app: netapp-mcp-server
template:
metadata:
labels:
app: netapp-mcp-server
spec:
containers:
- name: netapp-mcp-server
image: netapp/activeiq-mcp-server:latest
ports:
- containerPort: 8080
env:
- name: NETAPP_UM_HOST
valueFrom:
secretKeyRef:
name: netapp-credentials
key: um-host
resources:
requests:
memory: "512Mi"
cpu: "250m"
limits:
memory: "1Gi"
cpu: "500m"
livenessProbe:
httpGet:
path: /health
port: 8080
initialDelaySeconds: 30
periodSeconds: 10
Monitoring and Observability¶
Metrics Collection¶
- Application Metrics: Request rates, response times, error rates
- System Metrics: CPU, memory, disk usage
- NetApp Metrics: API response times, connection status
- Business Metrics: Tool usage, user activity
Logging Strategy¶
import structlog
logger = structlog.get_logger("netapp.mcp.server")
async def execute_tool(tool_name: str, params: dict):
logger.info("tool.execute.start", tool=tool_name, params=params)
try:
result = await tool.execute(params)
logger.info("tool.execute.success", tool=tool_name, result_size=len(result))
return result
except Exception as e:
logger.error("tool.execute.error", tool=tool_name, error=str(e))
raise
Health Checks¶
class HealthChecker:
async def check_health(self) -> Dict[str, Any]:
checks = {
"server": await self.check_server(),
"netapp": await self.check_netapp_connection(),
"cache": await self.check_cache(),
"temporal": await self.check_temporal()
}
status = "healthy" if all(checks.values()) else "unhealthy"
return {"status": status, "checks": checks}
Future Enhancements¶
Planned Features¶
- GraphQL Support: Alternative query interface
- WebSocket Support: Real-time event streaming
- Plugin System: Extensible tool architecture
- Multi-tenant Support: Isolated environments
- Advanced Caching: Intelligent cache invalidation
- ML Integration: Predictive analytics
Scalability Roadmap¶
- Database Layer: Persistent storage for complex queries
- Event Streaming: Kafka/Pulsar for event processing
- Microservices: Split into specialized services
- API Gateway: Centralized routing and security
- Service Mesh: Advanced networking and observability