Skip to content

Component Model Designยถ

๐Ÿงฉ Overviewยถ

This document defines the component model for the AI-enhanced GitLab development environment, detailing the modular architecture, component responsibilities, and interaction patterns.

๐Ÿ—๏ธ Component Architectureยถ

Layered Architectureยถ

graph TB subgraph "Presentation Layer" A[IDE Extensions] B[Web Dashboard] C[CLI Interface] end subgraph "Application Layer" D[GitLab MCP Server iwakitakuma] E[Request Processor] F[Response Formatter] end subgraph "Business Logic Layer" G[AI Orchestrator] H[GitLab Manager] I[User Context Manager] end subgraph "Integration Layer" J[AI Service Connectors] K[GitLab API Client] L[Webhook Processor] end subgraph "Data Access Layer" M[Configuration Repository] N[Cache Manager] O[Session Store] end A --> D B --> D C --> D D --> E E --> G G --> J H --> K I --> M E --> F

๐Ÿ“ฆ Core Componentsยถ

1. MCP Server Coreยถ

Purpose: Central coordination hub for all system operations

classDiagram class MCPServerCore { -Router router -MiddlewareChain middlewares -ComponentRegistry registry -ConfigManager config +initialize() +start() +stop() +registerComponent(component) +handleRequest(request) } class Router { -Map~String, Handler~ routes +addRoute(path, handler) +route(request) +getHandler(path) } class MiddlewareChain { -List~Middleware~ middlewares +addMiddleware(middleware) +execute(request, response) } MCPServerCore --> Router MCPServerCore --> MiddlewareChain

Responsibilities: - Request routing and lifecycle management - Component registration and dependency injection - Configuration management - Error handling and logging

2. AI Orchestratorยถ

Purpose: Manages AI service interactions and prompt optimization

classDiagram class AIOrchestrator { -List~AIProvider~ providers -PromptManager promptManager -ResponseProcessor responseProcessor +processRequest(request) +selectProvider(criteria) +optimizePrompt(prompt) +aggregateResponses(responses) } class AIProvider { <> +generateResponse(prompt) +getCapabilities() +getStatus() } class OpenAIProvider { -String apiKey -String model +generateResponse(prompt) +getCapabilities() +getStatus() } class AnthropicProvider { -String apiKey -String model +generateResponse(prompt) +getCapabilities() +getStatus() } AIOrchestrator --> AIProvider OpenAIProvider ..|> AIProvider AnthropicProvider ..|> AIProvider

Responsibilities: - AI service selection and load balancing - Prompt engineering and optimization - Response aggregation and formatting - Fallback and error handling

3. GitLab Managerยถ

Purpose: Handles all GitLab API interactions and data management

classDiagram class GitLabManager { -GitLabClient client -WebhookHandler webhookHandler -EventProcessor eventProcessor +getProjects() +getMergeRequests(projectId) +getIssues(projectId) +processWebhook(payload) +createComment(content) } class GitLabClient { -String baseUrl -String accessToken -HttpClient httpClient +makeRequest(endpoint, method, data) +authenticate() +handleRateLimit() } class WebhookHandler { -Map~String, EventHandler~ handlers +registerHandler(eventType, handler) +processWebhook(payload) +validateWebhook(payload) } GitLabManager --> GitLabClient GitLabManager --> WebhookHandler

Responsibilities: - GitLab API communication - Webhook processing and event handling - Data transformation and caching - Rate limiting and error recovery

4. User Context Managerยถ

Purpose: Manages user sessions, preferences, and contextual information

classDiagram class UserContextManager { -SessionStore sessionStore -PreferenceManager preferences -ContextBuilder contextBuilder +getUserContext(userId) +updateUserPreferences(userId, prefs) +buildRequestContext(request) +invalidateSession(sessionId) } class SessionStore { -CacheInterface cache -int ttl +createSession(userId) +getSession(sessionId) +updateSession(sessionId, data) +expireSession(sessionId) } class PreferenceManager { -Repository~UserPreference~ repository +getPreferences(userId) +updatePreferences(userId, prefs) +getDefaultPreferences() } UserContextManager --> SessionStore UserContextManager --> PreferenceManager

Responsibilities: - User authentication and session management - Preference storage and retrieval - Context building for AI requests - Permission and access control

๐Ÿ”Œ Integration Componentsยถ

1. AI Service Connectorsยถ

Purpose: Abstraction layer for different AI service providers

classDiagram class AIServiceConnector { <> #String apiKey #HttpClient client +connect() +disconnect() +sendRequest(request) +handleResponse(response) +getHealth() } class OpenAIConnector { -String endpoint -String model +generateCompletion(prompt) +generateCode(specification) +analyzeCode(code) } class AnthropicConnector { -String endpoint -String model +generateCompletion(prompt) +generateCode(specification) +analyzeCode(code) } class LocalAIConnector { -String endpoint -String model +generateCompletion(prompt) +generateCode(specification) +analyzeCode(code) } AIServiceConnector <|-- OpenAIConnector AIServiceConnector <|-- AnthropicConnector AIServiceConnector <|-- LocalAIConnector

2. IDE Integration Componentsยถ

Purpose: Handle communication with various IDE clients

classDiagram class IDEIntegration { <> +sendNotification(message) +requestInput(prompt) +updateUI(changes) +getSelection() } class VSCodeIntegration { -MCPClient mcpClient -ExtensionContext context +initialize(context) +registerCommands() +handleRequest(request) } class CodiumIntegration { -MCPClient mcpClient -ExtensionContext context +initialize(context) +registerCommands() +handleRequest(request) } IDEIntegration <|.. VSCodeIntegration IDEIntegration <|.. CodiumIntegration

๐Ÿ—„๏ธ Data Componentsยถ

1. Configuration Repositoryยถ

Purpose: Centralized configuration management

classDiagram class ConfigurationRepository { -ConfigSource[] sources -ConfigValidator validator -EventEmitter eventEmitter +loadConfiguration() +getConfiguration(key) +updateConfiguration(key, value) +validateConfiguration(config) } class ConfigSource { <> +loadConfig() +saveConfig(config) +watchChanges() } class FileConfigSource { -String filePath +loadConfig() +saveConfig(config) +watchChanges() } class EnvironmentConfigSource { -Map~String, String~ envVars +loadConfig() +saveConfig(config) +watchChanges() } ConfigurationRepository --> ConfigSource ConfigSource <|-- FileConfigSource ConfigSource <|-- EnvironmentConfigSource

2. Cache Managerยถ

Purpose: Intelligent caching for improved performance

classDiagram class CacheManager { -CacheProvider provider -EvictionPolicy evictionPolicy -int defaultTTL +get(key) +set(key, value, ttl) +delete(key) +clear() +getStats() } class CacheProvider { <> +get(key) +set(key, value, ttl) +delete(key) +exists(key) } class RedisProvider { -RedisClient client +get(key) +set(key, value, ttl) +delete(key) +exists(key) } class MemoryProvider { -Map~String, CacheEntry~ cache +get(key) +set(key, value, ttl) +delete(key) +exists(key) } CacheManager --> CacheProvider CacheProvider <|.. RedisProvider CacheProvider <|.. MemoryProvider

๐Ÿ”„ Component Interaction Patternsยถ

1. Request Processing Patternยถ

sequenceDiagram participant Client participant MCPCore as MCP Core participant AIOrch as AI Orchestrator participant GitLabMgr as GitLab Manager participant Cache Client->>MCPCore: Request MCPCore->>MCPCore: Validate & Route MCPCore->>Cache: Check Cache alt Cache Hit Cache->>MCPCore: Cached Response else Cache Miss MCPCore->>GitLabMgr: Get Context GitLabMgr->>MCPCore: Context Data MCPCore->>AIOrch: Process Request AIOrch->>MCPCore: AI Response MCPCore->>Cache: Store Response end MCPCore->>Client: Final Response

2. Event-Driven Patternยถ

sequenceDiagram participant GitLab participant WebhookHandler as Webhook Handler participant EventProcessor as Event Processor participant AIOrch as AI Orchestrator participant Notification as Notification Service GitLab->>WebhookHandler: Webhook Event WebhookHandler->>EventProcessor: Process Event EventProcessor->>AIOrch: Analyze Changes AIOrch->>EventProcessor: Analysis Result EventProcessor->>Notification: Send Notification EventProcessor->>GitLab: Post Comment

๐Ÿงช Component Testing Strategyยถ

Unit Testingยถ

YAML
component_tests:
  mcp_server_core:
    - test_request_routing
    - test_middleware_execution
    - test_component_registration

  ai_orchestrator:
    - test_provider_selection
    - test_prompt_optimization
    - test_response_aggregation

  gitlab_manager:
    - test_api_communication
    - test_webhook_processing
    - test_error_handling

Integration Testingยถ

YAML
integration_tests:
  ai_gitlab_flow:
    - test_code_review_workflow
    - test_issue_analysis_flow
    - test_documentation_generation

  ide_integration:
    - test_vscode_communication
    - test_codium_communication
    - test_real_time_assistance

๐Ÿ“Š Component Metricsยถ

Performance Metricsยถ

YAML
metrics:
  request_processing:
    - request_duration
    - request_throughput
    - error_rate

  ai_orchestrator:
    - provider_response_time
    - prompt_optimization_time
    - success_rate

  gitlab_manager:
    - api_response_time
    - webhook_processing_time
    - rate_limit_hits

Health Metricsยถ

YAML
health_checks:
  components:
    - mcp_server_status
    - ai_provider_availability
    - gitlab_connectivity
    - cache_availability

  thresholds:
    response_time: 500ms
    error_rate: 1%
    availability: 99.9%

๐Ÿ”ง Component Configurationยถ

Component Registryยถ

YAML
components:
  mcp_server_core:
    class: MCPServerCore
    singleton: true
    dependencies:
      - router
      - middleware_chain

  ai_orchestrator:
    class: AIOrchestrator
    dependencies:
      - ai_providers
      - prompt_manager

  gitlab_manager:
    class: GitLabManager
    dependencies:
      - gitlab_client
      - webhook_handler

Dependency Injectionยถ

YAML
dependencies:
  ai_providers:
    - name: openai
      class: OpenAIProvider
      config:
        api_key: "${OPENAI_API_KEY}"
        model: "gpt-4"

    - name: anthropic
      class: AnthropicProvider
      config:
        api_key: "${ANTHROPIC_API_KEY}"
        model: "claude-3"

This component model provides a solid foundation for building a scalable, maintainable, and testable AI-enhanced GitLab development environment.